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Let (fL M) be a fuzzy quantum poset of type l, II, or FQP of type I, It for 
short. For Boolean representations of fuzzy quantum spaces, by a representa- 
tion of (f~, M) we mean a quantum logic dg (i.e., an orthocomplemented 
a-orthocomplete orthomodular poset with a homomorphism h: M f2g ,#  such 
that for any state s on M and any observable .g on Jr there is a state ~ on ~t' 
and observable X on M such that the following diagram commutes [where N'(~) 
is a Borel G-algebra of the real line lt~]: 

~(~)  

/ /  ! 
s ~ | [/_.:// y 

R 

We prove that a representation of FQP of type I always exists and a represen- 
tation of FQP of type II exists in some cases. 

1. PRELIMINARIES 

W e  recal l  t ha t  two  fuzzy  sets a, b are  said to be f u z zy  orthogonal, we 

wri te  a •  b, iff  a c ~ b , = i n f ( a ,  b) < 1/2, a n d  orthogonal, we wr i te  a J_ b, iff  

a < b  • 
Let  f~ be a n o n e m p t y  set, M be a sys tem o f  fuzzy  sets, M _~ [0, 1] a, 

such that :  

(i) l(co) = 1 for  any  coef~,  then  I ~ M .  

(ii) a ~ M ,  then  a l , = l  - a s M .  
(iii) l[2(co) = 1/2 for  any  c o s f L  then  112r 
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A set M _ [0, 1] n satisfying conditions (i)-(i i i)  is said to be an FQP of type 
I (of type H) if it is closed with respect to a union of any sequence of 
mutually fuzzy orthogonal (mutually orthogonal) fuzzy sets, respectively, 
where by union we mean the union of Zadeh's connective. If M is closed 
with respect to a union of any sequence of fuzzy sets from M, then M is 
said to be a fuzzy quantum space, or FQS for short. 

It is clear that a _L b, then a _l_ r b for any a, bEM. So, an FQP of type 
I is an FQP of type II and and FQS is an FQP of type I (Dvure6enskij, 
n.d.; Long, 1992, n.d.; Rie6an, 1988). 

An observable X on (fL M) is a mapping X: N'(R) --*M such that: 
(i) X(E e) = X(E) • for any Borel set E ~ ( R ) .  
(ii) X( U~-i E i ) =  U~~ X(E~) for any sequence {E~}F=~eN(N). 
Denote by D(M) the set of all observables on (FL M). 
A mapping m: M -~ [0, 1] is said to be a state of type I, II on (9,, M) 

if: 
(i) m(a) + m(a • = 1 for a~M. 
(ii) m(U/~=l a i ) = ~ = l  m(ai) for any sequence of mutually fuzzy 

orthogonal, orthogonal, fuzzy sets {ai }F=I __c_ M, respectively. 
Denote by ~I(M),  ~ ( M )  the sets of all states of types I, II on (fL M), 

respectively. 

Proposition 1. Let (fl, M) be an FQP of type I; then: 
(i) ~ ( M )  __ ~ . ( M ) .  
(ii) If (~, M) is an FQS, then ~ ( M )  = ~n(M) .  

Now let (~, M) be an FQP of type I or FQP of type II such that 

a n c ~ M  foranya,  ceM, c>1/2  (2) 

Consider a relation ~ _c M • M defined by 

a ~ b  if a n b  • a •  < 1/2 

It is clear that (i) a ,-~ a for any a from M; (ii) if a ~ b, then a • ,-~ b• (iii) 
if a ~ b, then b ~ a, but ,,~ is not transitive, in general. Let - be the 
transitive closure of ~ ,  i.e., the smallest quivalence relation on M containing 
,-~. It is obvious that a ~ b  iff there are a l , a z , . . . , a n e M  such that 

a H a l ,  a I ~ a 2 ,  . . . , a  n ~ b. 
It can be proved that a ~ b iff there is a c EM, c -> 1/2, such that 

ac'~b• a •  <- 1/2 

or equivalently 

{arab • > 1/2} ~) {a•  > 1/2} _c {c = 1/2} 

where { a n  b • > 1/2} ,= {co eft;  ( a n  b l)(co) > 1/2}, etc. 
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Note  that  if we consider ~ = [0, 1], 

a(co) = ~0.7 if 
( 0.3 if 

b(o)) = {0.4 
0.6 

c = a w a •  d = b w b a ;  e = d ~ a ;  
i = e w d •  k = e w e •  then 

M =  

0 - < o ) < 0 . 6  

0.6-<0) < 1 

if 0-< ~o < 0 . 6  

if 0.8 -- co -< 1 

f =dc~a• g = a w f ;  h = b w e ;  

{0, 1, a, b, c, d, e,f,  g, h, i,j, k, a • b l ,  c • d • e •  l ,  g i ,  h ~, i•177 k• 

is an F Q P  o f  type I I  with (2) but  not  a type I. 
The  following results can be proved  in the same way as the proofs  in 

Dvure6enskij  and Long  (1991). 

Proposition 2. The transit ive closure ~ is a p roper  congruence relation 
in M. 

Now,  for any a e M ,  we put  8 . ' = { b e M ;  b ~ a } ,  and J t d . . = { ~ ; a e M } .  
In Jr we define a relation -< via 

~ - < 6  iff t h e r e i s a c > - l / 2 a n d a c ~ b •  

and the mapp ing  _1_: ./# ~ o ~  defined via 8 ~ 8 ~, a e M ,  then -< and l are 
well defined. It  is easy to check that  < is an order  relation and i is an 
o r thocomplemen ta t ion  on Jet. 

Lemma 3. Let (~ ,  M )  be an F Q P  of  type I or F Q P  of  type I I  with (2): 
(i) For  any a, ceM,  c >- 1/2; a ~ a c ~ c w c  • 
(ii) For  any a, b e M ,  8 <- 5, then there are al, b l e M  such that  a~ ~ a ,  

b I ~ b and a~ < b 1 . 

Proof. Part  (i) is clear. 
(ii) Since ci <__/7, there is c e M ,  c >- 1/2, such that  a c~b I c~c -< 1/2, then 

al ,= a c~ c w c a and bl ;= b c~ c w c • satisfy the condit ions of  the theorem.  

Theorem 4. Let (f2, M )  be an F Q P  of  type I or F Q P  of  type I I  with 
(2); then Jh' equipped with an order  relation < and an o r thocomplemen ta -  
tion _1_ is a quan tum logic with the least element 0 and the greatest  element 
i and h: M ~ ~ defined via a ~-~ ~ is a a - h o m o m o r p h i s m  f rom M onto  
JC/-- i .e . ,  h(a L) = h(a) ~ and h( Y~= 1 ai) = 1,.)~=1 h(ai) for  any sequence of  
mutual ly  fuzzy or thogonal ,  or thogonal ,  fuzzy sets, respectively. 
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Let (~, M) be an FQP of type II; we put 

X ( M )  = {A =_f~; 3 a e M ;  {a>l /2}~Ac_{a>_l /2}}  (3) 

J(M)  = {A c_f2; 3asM; A c_ {a = 1/2}} 

There are two constructions of representations of FQP (Dvure~enskij, 
n.d.; Dvure6enskij and Long, 1991). The following proposition shows that 
they are equivalent. 

Proposition 5. Let (D, M) be an FQP of type I or FQP for type II with 
(2); then: 

(i) oUr(M) is a q-a-algebra and J ( M )  is an a-ideal of OU(M) [i.e., 
OU(M) is a system of subsets of D which is closed with respect to 
complementation and countable union of mutually disjoint subsets, J ( M )  
is a nonempty subset of OU(M) closed with respect to countable union of 
mutually disjoint subsets, and if A sou(M), Bs3(M) ,  A ~_B, then 
A s J (M) ] .  

(ii) Consider a mapping g: OU(M) ~J/{,  defined via A ~-, a, where A, 
a satisfy (3); then g defines well a a-homomorphism from OU(M) onto J/g 
and g- l (~)  = J ( M ) .  Moreover, we consider on OU(M) a relation 0: for any 
A, B so~(M), AOB iff A \B, B\A sJ(M),  then 0 is a congruence relation on 
OU(M). Put, for any A soU(M), 

,4 .'= {B sou(M);  BOA }, OU(M)/O ..= {.,t; A sou(M)} 

Define 

.d• c and A < / ~  iff A \ B s J ( M )  

Then _L, < is well defined, an orthocomplementation, and an order 
relation on OU(M)/O such that OU(M)/O with _L, < is a quantum logic and 
the following diagram commutes: 

g 

OU(M) , 

"rT 
OU(M)/O 

where Pr is a projection. 

2. A REPRESENTATION OF TYPES I, II FQP 

Theorem 6. Let (D, M) be an FQP of type I or FQP of type II with 
(2); then for any observable J[ on Jr is an observable X on M such 
that J? = h o X, where h, d / f r o m  Theorem 4. 
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Proof. Let 3K be an observable on ~r and Q be the set of  rational 
numbers. Consider a-~,=.g(( -oo,  r)), r e Q ;  then ar < a, if r -< s. Owing to 
Lemma 3, we can set up a sequence br, rsQ, such that h(br)=at and 
br -< b, if r < s. Due to Theorem 1.4 of  Varadarajan (1968) and Theorem 
4.5 of  Long (n.d.) there is an observable X on M such that 
X(( - oo, r)) = br. Therefore, J~ = h o X. 

Theorem 7. Let (fL M) be an FQP of  type I; then for any m e ~ ( M ) ,  
rh: ~ ' - ~  [0, 1] defined by rh(8) = m(a), a eM, is a state on M. Conversely, 
for any s ~ l ( M )  there is a state m e ~ ( M )  such that rh = s. 

Proof The theorem can be proved in the same way as the proofs in 
Dvure6enskij (n.d.). 

Corollary 8. Let (f~, M) be an FQP of type II with (2) such that for 
any m ~ H ( M ) ;  for any a,b~M, ac~b~<l/2,  a• imply 
m(a) =m(b), then for any mE~n(M), rh: J g ~ [ 0 ,  1] defined by rh(6)= 
m(a), a e M, is a state on M. 

Conversely, for any se |  there is a state ms~2(M) such that 

Theorem 9. Let (fL M) be an FQP of type I or FQP of type II  
satisfying the conditions of  Corollary 8; then ~ with a -homomorph i sm h 
from Theorem 4 is a representation of M. 

3. C O N C L U S I O N  

We have solved the problem of  representation of an FQP of type I and 
some kinds of  FQP of type II. We can also point out that there is an FQP 
of type II  which has no representation. Finally, natural questions arise: Is 
any quantum logic a representation of  some FQP? We note that in 
Varadarajan (1968, Theorem 2.2.5) it is proved that every logic is a 
surjective homomorphic  image of  a concrete logic. But the conditions of  a 
representation in our sense are not satisfied in general. 
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